流程:A1→A2→B1→A3→B2→A4→B3……,如图2所示。
3.3 控制措施
(1)成孔精度控制 为控制咬合桩的成孔精度达到《地下铁道工程施工及验收规范》[4]要求,采用成孔精度全过程控制的措施。本工程采用的是在成桩机具上悬挂两个线柱控制南北、东西向护筒外壁垂直度并用两台测斜仪进行孔内垂直度检查。发现有偏差时及时进行纠偏调整。
(2)A桩混凝土缓凝时间的确定 在测定出单桩成桩所需时间t后,可根据下式计算A桩混凝土缓凝时间T
T=3t+K
其中,K为储备时间,一般取1.5t。
3.4施工问题与解决方案
(1)防止管涌措施 在B桩成孔过程中,由于A桩混凝土未完全凝固,还处于流动状态,因此其有可能从A、B桩相交处涌入B桩孔内,形成“管涌”。克服措施有:①控制A桩坍落度<14cm;②护筒应超前孔底至少1 5m;③实时观察A桩混凝土顶面是否下陷,若发现下陷应立即停止B桩开挖,并一边将护筒尽量下压,一边向B桩内填土或注水(平衡A桩混凝土压力),直至制止住“管涌”为止。
(2)遇地下障碍物处理方法 由于咬合桩采用的是钢护筒,所以可吊放作业人员下孔内清除障碍物。
(3)克服钢筋笼上浮方法 在向上拔出护筒时,有可能带起放好的钢筋笼。预防措施可选择减小B桩混凝土骨料粒径或者可在钢筋笼底部焊上一块比其自身略小的薄钢板以增加其抗浮能力。
4 工程实践效果与分析
在对各种围护结构型式比选后,最终在天津西南角地铁车站基坑工程中选择了钻孔咬合桩这一新工法。施工中,在靠近金禧大酒店一侧的基坑采用φ1200咬合桩,其余基坑段采用φ1000咬合桩,桩间咬合200mm,桩长为19.2m。由于咬合桩这一围护型式首次在天津地铁工程中使用,而且基坑工程又是整个项目的重要工程,因此非常有必要在基坑开挖过程中跟踪施工进程,对桩体侧移、坑周地面沉陷和地层位移、附近建筑物、地下管网等变形及受力情况进行监测[5],用取得的监测数据,与预测值或计算值相比较并进行分析,能可靠的反映工程施工所造成的影响,能较准确地以量的形式反映这种影响的程度,也可以对咬合桩的适用性进行客观、准确的评价。
4.1 监测方案
图3为基坑监测布点平面布置示意图。
监测设备包括:高精度水准仪,经纬仪和测斜仪。根据施工设计,在基坑开挖和主体结构施工期间,主要进行了变位、沉降、咬合桩变位和地下管线位移监测,监测对象及相应使用的仪器见表1。
4.2 数据分析
从2003年8月初开始监测,到2004年2月底结束,前后共计七个月的时间。在基坑开挖期间,工程中没有出现险情和事故,咬合桩防渗效果很好,各项监测数据也比较平稳,现对下面几个监测内容得到的监测数据进行分析说明。